Table of Derivatives

General Formulas

  1. ddx(c)=0\frac{d}{dx}(c)=0
  2. ddx[cf(x)]=cf(x)\frac{d}{dx}[cf(x)]=cf^{\prime}(x)
  3. ddx(xn)=nxn1, for real numbers n\frac{d}{dx}(x^n)=nx^{n-1}\text{, for real numbers n}
  4. ddx[f(x)+g(x)]=f(x)+g(x)\frac{d}{dx}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)
  5. ddx[f(x)g(x)]=f(x)g(x)\frac{d}{dx}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)
  6. ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\frac{d}{dx}[f(x)g(x)]=f^{\prime}(x)g(x)+f(x)g^{\prime}(x)
  7. ddx[f(x)g(x)]=g(x)f(x)f(x)g(x)[g(x)]2\frac{d}{dx}[\frac{f(x)}{g(x)}]=\frac{g(x)f^{\prime}(x)-f(x)g^{\prime}(x)}{[g(x)]^2}
  8. ddx[f(g(x))]=f(g(x))g(x)\frac{d}{dx}[f(g(x))]=f^{\prime}(g(x))\cdot g^{\prime}(x)

Trigonometric Functions

  1. ddx[sin(x)]=cos(x)\frac{d}{dx}[\sin(x)]=\cos(x)
  2. ddx[cos(x)]=sin(x)\frac{d}{dx}[\cos(x)]=-\sin(x)
  3. ddx[tan(x)]=sec2(x)\frac{d}{dx}[\tan(x)]=\sec^2(x)
  4. ddx[csc(x)]=csc(x)cot(x)\frac{d}{dx}[\csc(x)]=-\csc(x)\cot(x)
  5. ddx[sec(x)]=sec(x)tan(x)\frac{d}{dx}[\sec(x)]=\sec(x)\tan(x)
  6. ddx[cot(x)]=csc2(x)\frac{d}{dx}[\cot(x)]=-\csc^2(x)

Inverse Trigonometric Functions

  1. ddx[sin1(x)]=11x2\frac{d}{dx}[\sin^{-1}(x)]=\frac{1}{\sqrt{1 - x^2}}
  2. ddx[cos1(x)]=11x2\frac{d}{dx}[\cos^{-1}(x)]=-\frac{1}{\sqrt{1 - x^2}}
  3. ddx[tan1(x)]=11+x2\frac{d}{dx}[\tan^{-1}(x)]=\frac{1}{1 + x^2}
  4. ddx[csc1(x)]=1xx21\frac{d}{dx}[\csc^{-1}(x)]=-\frac{1}{|x|\sqrt{x^2 - 1}}
  5. ddx[sec1(x)]=1xx21\frac{d}{dx}[\sec^{-1}(x)]=\frac{1}{|x|\sqrt{x^2 - 1}}
  6. ddx[cot1(x)]=11+x2\frac{d}{dx}[\cot^{-1}(x)]=-\frac{1}{1 + x^2}

Exponential and Logarithmic Functions

  1. ddx(ex)=ex\frac{d}{dx}(e^x)=e^x
  2. ddx(ax)=axln(a)\frac{d}{dx}(a^x)=a^x\ln(a)
  3. ddx[ln(x)]=1x\frac{d}{dx}[\ln(|x|)]=\frac{1}{x}
  4. ddx[loga(x)]=1xln(a)\frac{d}{dx}[\log_a(x)]=\frac{1}{x\ln(a)}

Hyperbolic Functions

  1. ddx[sinh(x)]=cosh(x)\frac{d}{dx}[\sinh(x)]=\cosh(x)
  2. ddx[cosh(x)]=sinh(x)\frac{d}{dx}[\cosh(x)]=\sinh(x)
  3. ddx[tanh(x)]=sech2(x)\frac{d}{dx}[\tanh(x)]=\text{sech}^2(x)
  4. ddx[csch(x)]=csch(x)coth(x)\frac{d}{dx}[\text{csch}(x)]=-\text{csch}(x)\coth(x)
  5. ddx[sech(x)]=sech(x)tanh(x)\frac{d}{dx}[\text{sech}(x)]=-\text{sech}(x)\tanh(x)
  6. ddx[coth(x)]=csch2(x)\frac{d}{dx}[\coth(x)]=-\text{csch}^2(x)

Inverse Hyperbolic Functions

  1. ddx[sinh1(x)]=1x2+1\frac{d}{dx}[\sinh^{-1}(x)]=\frac{1}{\sqrt{x^2 + 1}}
  2. ddx[cosh1(x)]=1x21, (x > 1)\frac{d}{dx}[\cosh^{-1}(x)]=\frac{1}{\sqrt{x^2 - 1}}\text{, (x > 1)}
  3. ddx[tanh1(x)]=11x2, (|x| < 1)\frac{d}{dx}[\tanh^{-1}(x)]=\frac{1}{1 - x^2}\text{, (|x| < 1)}
  4. ddx[csch1(x)]=1x1+x2, (x0)\frac{d}{dx}[\text{csch}^{-1}(x)]=-\frac{1}{|x|\sqrt{1 + x^2}}\text{, (x}\not=\text{0)}
  5. ddx[sech1(x)]=1x1x2, (0 < x < 1)\frac{d}{dx}[\text{sech}^{-1}(x)]=-\frac{1}{x\sqrt{1 - x^2}}\text{, (0 < x < 1)}
  6. ddx[coth1(x)]=11x2, (|x| > 1)\frac{d}{dx}[\coth^{-1}(x)]=\frac{1}{1 - x^2}\text{, (|x| > 1)}

Additional Notes

If you're learning Calculus, you may have recognized several of these rules. Many are commonly used and have names associated with them, such as:

Inverse trigonometric and hyperbolic functions (entries 15–20 and 31–36) also follow standard patterns, but are not typically given short names like the above rules.